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Abstract
A new experimental/numerical technique of classification of flow regimes (flow patterns) in
air–magnetic fluid two-phase flow is proposed in the present paper. The proposed technique
utilizes the electromagnetic induction to obtain time-series signals of the electromotive force,
allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain
the time-series signals in a vertical upward air–magnetic fluid two-phase flow. The signals
obtained are first treated using two kinds of wavelet transforms. The data sets treated are then
used as input vectors for an artificial neural network (ANN) with supervised training. In the
present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are
generally the main flow regimes. To validate the flow regimes, a visualization experiment is
also performed with a glycerin solution that has roughly the same physical properties, i.e.,
kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow
regimes from the visualization are used as targets in an ANN and also used in the estimation of
the accuracy of the present method. As a result, ANNs using radial basis functions are shown to
be the most appropriate for the present classification of flow regimes, leading to small
classification errors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In studies on gas–liquid two-phase flow, determination of
the flow regime (flow pattern) is one of the key parts since
the flow characteristics strongly depend on it. Therefore,
identifications of the flow regime are important. In general,
we can observe four main flow regimes in vertical upward
gas–liquid two-phase flows, as shown in figure 1. There
is no consistent theory on flow regime classification so
it is not easy to estimate flow regimes using theoretical
approaches. As for experimental methods, a number of
methods have been proposed (see e.g. [1, 2]). Most of the
methods are contact methods, namely requiring contact with
the flow of interest. Even in non-contact methods, the cost
of deployment and measurement is often significant. Some
pipe processing is also often needed. The ideal method is
flow regime classification based on an easy and non-contact
measurement.

Applications of magnetic fluids using gas–liquid flow have
been proposed, such as in energy conversion devices and heat
transport devices [3, 4]. For the analysis of these devices,
flow regimes are also important for the aforementioned reason.
However, flow regime classification in magnetic fluids is
much more difficult since magnetic fluids are opaque. In
the present work, a new flow regime method of classification
of air–magnetic fluid two-phase flows based on non-contact
measurement using artificial neural networks as classification
tools has been proposed.

2. Experiment

2.1. Principle of measurement

Figure 2 shows the process schematic for the present
measurement. In the system under consideration, a uniform
alternating magnetic field is applied to a pipe by an excitation
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Bubbly flow Slug flow Churn flow Annular flow

Figure 1. Flow regimes in upward vertical gas–liquid two-phase
flow.

coil which is a Helmholtz coil. An air–magnetic fluid mixture
flows in the pipe. In this situation, when directions of the
magnetic field and magnetization of the magnetic fluid are
parallel, the magnetic flux density Bmix passed through the
magnetic fluid which includes gaseous phases is expressed
as [5]

Bmix ≈ μ0{H + (1 − α)Mmf} (1)

where H is the applied magnetic field, μ0 is the vacuum
permeability, α is the void fraction and Mmf is the
magnetization of the magnetic fluid. For the water-based
magnetic fluid which is used in the present study, equation (1)
works well within an error of 1.37%. The induced
electromotive force that occurs in the induction coil with n
windings in figure 2 is given by employing Faraday’s law as

V = −n
∂

∂ t

∫ ∫
S
Bmix · dS (2)

where S is the inner area of an induction coil. The
magnetization of the magnetic fluid is generally expressed by

Mmf = n0mL

(
μ0m H

kT

)
(3)

where n0 is the number of magnetic particles per unit volume,
m is the magnetic moment of a magnetic particle, k is
Boltzmann’s constant and T is the temperature. The function
L(·) stands for the Langevin function L(ξ) := coth ξ−ξ−1. In
consideration of equations (1)–(3), when the applied magnetic
field and the temperature is constant, the induced electromotive
force is uniquely determined by the void fraction. When
gaseous phases (bubbles) pass through the control volume of
the measurement (see figure 2), the void fraction increases,
that is, the induced electromotive force decreases. Taking into
account this phenomenon and the flow regimes in figure 1,
the relations between the flow regimes and the corresponding
signal waveform should be as shown in figure 3.

To obtain the characteristics of the signals, the signal
waveforms are firstly extracted using a wavelet transform. The

Wave signal in induction coil

t[s]

Induction coil
V[V]

Flow
Control volume

Alternating 
Magnetic field

Figure 2. Process schematic for the present measurement.

(1) Bubbly flow (2) Slug flow

(3) Churn flow (4) Annular flow

V[V] V[V]

V[V] V[V]

t [s]

t [s] t [s]

t [s]

Flow

Waveform of signal

Figure 3. Signal waveforms and flow regimes.

extracted signals are transformed into appropriate input vectors
for an artificial neural network (ANN). A low-dimensional
voltage distribution was used as ANN input vector. A set of
training data, i.e., a set of ‘input vectors and targets’ assembles
an ANN that can classify the flow regimes. More details of
data (signal) analysis are mentioned below.

2.2. Test fluid

A water-based magnetic fluid (Taiho Industries Co., Ltd:
W-40) was used as the working fluid. The magnetization of
the magnetic fluid has low dependence on temperature. In
the visualization experiment used to verify the flow regimes,
a glycerin solution that has roughly the same kinetic viscosity
and surface tension as the water-based magnetic fluid was used.
The kinetic viscosity is 13.42 × 10−6 m2 s−1 and the surface
tension is 38.90 mN m−1.

2.3. Experimental setup and method

Figure 4 shows the experimental setup for the measurement.
The water-based magnetic fluid is made to run in the clockwise
direction by a pump. The inner diameter of the pipe is 12 mm.
Air injectors, which are connected to an air compressor, are
positioned at the lower part of the measuring section. The
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Figure 4. Experimental setup.

system achieves a vertical upward air–magnetic fluid two-
phase flow. The gaseous phases are removed in the separator
tank so that the magnetic fluid without the gaseous phases
recirculates. The volumetric flux (flow rate per unit area of
cross section (m s−1)) in each phase can be regulated. The
measuring apparatus is located at the measuring section in
figure 4. The details of the excitation coil (Helmholtz coil)
and induction coil are presented in figure 5. The induction
coil is connected to a PC equipped an analog–digital converter
(A/D converter) whose the range of input voltage is ±10 V
and the resolution level is 16 bits. The induced electromotive
force obtained is achieved by an amplifier installed between
the induction coil and the A/D converter. It is noted that time
response in the data acquisition system is 10−5 s. The sampling
frequency is 10 000 Hz and the total number of samplings
is 50 000, namely the measuring time is 5 s long. The
gain of the amplifier is 1000. The compensation–calibration
section consists of the same arrangement of the coils as for
the measuring section. The reduction coil in figure 4 is the
same as the induction coil. This section is set to cancel the
excess electromotive force generated by the induction coil. The
excess electromotive force is detected as a base voltage not
caused by the magnetization of the magnetic fluid but merely
due to the inductance of the coil itself. The magnetic flux
density at the applied uniform alternating magnetic field is
0.99 mT with 100 Hz. Table 1 shows the flow conditions in the
experiment. The flow condition is determined by considering
the removability of the gaseous phases in the separator tank.
The experiment with the volumetric flux of liquid phase being
0 m s−1 covers all flow regimes, i.e., from bubbly to annular
flows. The experiments with the volumetric flux of liquid
phase being 0.042 and 0.105 m s−1 cover from bubbly to
slug flows. The temperature of the magnetic fluid is kept to
22.0±1.0 ◦C in the experiment. The visualization to verify the
flow regimes is also conducted with a glycerin solution, which
has the same kinetic viscosity and surface tension as the water-
based magnetic fluid, in the same manner as in the experiment

Diameter: 164 mm

Diameter of copper wire: 0.5 mm

Thickness: 35 mm
Windings: 107 turns

Diameter of copper wire: 0.1 mm

Thickness: 6 mm
Windings: 1500 turns

Excitation coil (Helmholtz coil)

Induction coil

5 
m

m

164 mm

80 mm

35
 m

m
35

 m
m

50
 m

m

Figure 5. Excitation coil and induction coil (flow in X direction).

Table 1. Flow conditions in the experiment.

Volumetric flux of liquid phase
jl (m s−1)

Volumetric flux of gaseous phase
jg (m s−1)

0 0–14.737
0.042 0–0.486
0.105 0–0.295

with the magnetic fluid. The flow regimes determined by the
visualization are used for data in an ANN.

Figure 6 shows the representative signal obtained in each
flow regime. We can see that the waveforms of the signals
obtained agree with the waveforms in figure 3.

3. Data analysis

The signal of the electromotive force obtained in the
experiment is processed by a time–frequency analysis using
wavelet transforms. Figure 7 presents the signal processing.
Firstly the continuous wavelet transform is applied to the
signal obtained with the complex Morlet wavelet to extract the
waveforms (see figures 7(a) and (b)), namely [6, 7]

W f (a, b) :=
∫ ∞

−∞
f (x)

1√
a
ψ∗

(
x − b

a

)
dx,

ψ(x) ∈ L1(R) (4)

where W f (a, b) stands for the wavelet transform of function
f (x) with the scale a and the shift b. The function f (x) is
the signal obtained in this case and x is the time or the data
position. ψ∗(x) stands for the complex conjugate of ψ(x)
which is the mother wavelet and the complex Morlet wavelet
is given by

ψ(x) = 1√
πγb

e2π iγcx e− x2

γb (5)

where γb is the bandwidth parameter (=1) and γc is the wavelet
center frequency (=1.5). The optimal scale a is the maximum
value of the coefficient of the wavelet transform. In the present
study, the optimal scale level is 150, that is, the extracted signal
is

fext(x) = |W f (150, b)|. (6)
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Figure 6. Examples of measured signals for each flow regime ( jl = 0 (m s−1)).
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Figure 7. Procedure of signal processing.

The extracted signal is normalized by using the electromotive
forces of vacuum (void fraction α = 1) and the magnetic fluid
without gaseous phases (void fraction α = 0).

The normalized signal is transformed into a histogram
made of 300 bins. On the basis of the series of the data in each
bin, a probability density function (PDF) is estimated using a
discrete wavelet transform. Suppose that the PDF is searched

for on the whole real axis, belonging to L2(R). Then it can be
expressed by

fPDF(x) =
∑
k∈Z

c̃(L)k φ
(L)
k (x)+

−1∑
j=L

∑
k∈Z

d̃( j)
k ψ

( j)
k (x),

fPDF(x) ∈ L2(R) (7)
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Figure 8. PDF obtained in each flow regime ( jl = 0 (m s−1)).

where j is the resolution level, L is the primary resolution
level and k is the shift. The coefficients c̃(L)k and d̃( j)

k are the
estimators given by

c̃(L)k = 1

m

m∑
i=1

φ
(L)
k (Xi ), d̃( j)

k = 1

m

m∑
i=1

ψ
( j)
k (Xi ) (8)

with the following two-scale relations:

φ
(L)
k (x) =

√
2L φ(2L x − k), φ(x) =

∑
k∈Z

pk φ(2x − k),

(9)
ψ
( j)
k (x) =

√
2 j ψ(2 j x − k), ψ(x) =

∑
k∈Z

qk φ(2x − k),

(10)
where Xi is the sample of the i th bin and m is the number of
bins (m = 300 in the present study). {pk} and {qk} are the two-
scale sequences which are given according to wavelet [6] and
qk = (−1)k p1−k . The Daubechies wavelet (Daubechies 10) is
used. The first term in equation (7) is the coarse approximation
of the PDF and the second one is the detail of it. The PDF
is estimated as the sum of the approximation and the detail of
resolution level −5 (see figures 7(b) and (c)), namely

fPDF(x) ≈
∑
k∈Z

c̃(−5)
k φ

(−5)
k (x)+

∑
k∈Z

d̃(−5)
k ψ

(−5)
k (x). (11)

The estimated PDF is expected to contain the characteristics of
the flow regimes as shown in figure 8. The 300 data for each
PDF are grouped into 10 regions. In each region, the maximum
value of data is found (see figures 7(c) and (d)). In this process,
a set of 10 data is obtained for one PDF and is used as an input
vector for the ANNs.

4. Results and discussion

In numerical experiments, we have tested several kinds of
ANNs for the classification of flow regimes. As our result, we
find that ANNs using a radial basis function (RBF) are effective
for the present classification of flow regimes. The following
RBF neural network is finally adopted:

y =
n∑

i=1

W 〈2〉
i φRBF

(
b〈1〉

i ‖p − C
〈1〉
i ‖

)
+ b〈2〉 (12)

with

b〈1〉
i = 1

ζ
φ−1

RBF(0.5) (13)

where y is the output that indicates one of the flow regimes,
p is the input vector obtained by the measurement, W is the
weight and b is the bias. A〈l〉

i stands for a value of A in
the i th neuron of the lth layer. Here we gave C

〈1〉
i = ptar

i
by using a training set {(ptar

i , y tar
i )}p

i=1, and then n = p. It
is noted that t tar

i is termed the ‘target’. From the results of
the visualization, the targets are assigned to flow regimes like
1 = ‘bubbly’, 2 = ‘slug’, 3 = ‘churn’ and 4 = ‘annular’.
ζ is the coefficient used to determine the width of the RBF.
W 〈2〉

i and b〈2〉 can be uniquely determined by the training
set {(ptar

i , y tar
i )}p

i=1. φRBF is the radial basis function (RBF).
Figure 9 presents the process used to find the output (flow
regime) in the RBF neural network. The flow regimes (output
vectors) corresponding to the input vectors can be expressed
using functions of the input vectors. The RBF interpolates the
input vectors of the training set to find the function. Hence, the
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Table 2. Appropriate RBFs for the present method and resulting errors of the flow regime classification.

RBF Gaussian φRBF = e−x2
Cauchy φRBF = 1

x2+12 Multiquadric φRBF = √
x2 + 12 Inverse multiquadric φRBF = 1√

x2+12

Error 1.59% 1.59% 1.59% 1.19%

p

Input vector

Wi
(1) Wi

(2)

bi
(1) b(2)

Wi
(1)= pi

tar

pi
ptar yi

tar

1stlayer 2ndlayer

(RBF) f(x) = x

youtput

Output
Flow regimes

Training set
i=1

RBF neural network

Construction of ANN

Figure 9. Structure of the RBF neural network.

RBF neural network works as the function. The classifications
of flow regimes were performed with several types of RBF.
The RBFs that can classify the flow regimes with relatively
small errors are listed in table 2. The RBF neural network was
constructed with 126 pairs of the training set, i.e., p = 126 and
the investigation of the classification was performed with 252
input data. Table 2 also shows the resulting error for each RBF.
As shown in table 2, the inverse multiquadric RBF resulted in
the smallest error of 1.19%. The others could classify the flow
regimes with the small error of 1.59%. Taking into account the
results, it can be concluded that the present method is indeed
effective for the classification of flow regimes.

5. Conclusions

A technique of classification of flow regimes in air–magnetic
fluid two-phase flow is proposed using electromagnetic

induction for data generation and supervised-training artificial
neural networks for classification. A vertical upward two-
phase flow is of interest. Our result is that the corresponding
signals to flow regimes can be obtained by measurement
using electromagnetic induction. To detect the characteristics
of signals, the utilization of the wavelet transforms is
effective. The RBF neural network is applicable for flow
regime classification with an error of less than 1.6%. The
smallest classification error 1.19% is obtained using the inverse
multiquadric RBF.
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